
Synthesis of certified cost bounds

Nicolas Ayache

Abstract

The CerCo project aims at building a certified compiler for the C language that can
lift in a provably correct way information on the execution cost of the object code to cost
annotations on the source code. These annotations are added at specific program points
(e.g. inside loops). In this article, we describe a plug-in of the Frama− C platform that,
starting from CerCo’s cost annotation of a C function, synthesizes a cost bound for the
function. We report our experimentations on standard C code and C code generated from
Lustre files.

1 Introduction

Estimating the worst case execution time (WCET) of an embedded software is an important
task, especially in a critical system. The micro-controller running the system must be effi-
ciently used: money and reaction time depend on it. However, computing the WCET of a
program is undecidable in the general case, and static analysis tools dedicated to this task
often fail when the program involves complicated loops, living few hopes for the user to obtain
a result.

In this article, we present experiments that validate the new approach introduced by the
CerCo project1 for WCET prediction. With CerCo, the user is provided raw and certified
cost annotations. We design a tool that uses these annotations to generate WCET bounds.
When the tool fails, we show how the user can complete the required information, so as to
never be stuck. The tool is able to fully automatically compute and certify a WCET for a C
function with loops and whose cost is dependent on its parameters. We briefly recall the goal
of CerCo, and we present the platform used both to develop our tool and verify its results,
before describing our contributions.

CerCo. The CerCo project aims at building a certified compiler for the C language that
lifts in a provably correct way information on the execution cost of the object code to cost
annotations on the source code. An untrusted compiler has been developed [2] that targets
the 8051, a popular micro-controller typically used in embedded systems. The compiler relies
on the labelling approach to compute the cost annotations: at the C level, specific program
points — called cost labels — are identified in the control flow of the program. Each cost label
is a symbolic value that represents the cost of the instructions following the label and before
the next one. Then, the compilation keeps track of the association between program points
and cost labels. In the end, a concrete cost is computed for each cost label from the object
code, and the information is sent up to the C level for instrumentation. Figure 1a shows a C
code, and figure 1b presents its transformation through CerCo.

1http://cerco.cs.unibo.it/

1

http://cerco.cs.unibo.it/

int is sorted (int *tab, int size) {
int i, res = 1;

for (i = 0 ; i < size-1 ; i++) if (tab[i] > tab[i+1]) res = 0;

return res;

}

(a) before CerCo

int cost = 0;

void cost incr (int incr) { cost = cost + incr; }

int is sorted (int *tab, int size) {
int i, res = 1;

cost incr(97);

for (i = 0; i < size-1; i++) {
cost incr(91);

if (tab[i] > tab[i+1]) { cost incr(104); res = 0; }
else cost incr(84);

}

cost incr(4);

return res;

}

(b) after CerCo

Figure 1: An example of CerCo’s action

As one notices, the result of CerCo is an instrumentation of the input C program:

• a global variable called cost is added. Its role is to hold the cost information during
execution;

• a cost incr function is defined; it will be used to update the cost information;

• finally, update instructions are inserted inside the functions of the program: those are
the cost annotations. In the current state of the compiler, they represent the number
of processor’s cycles that will be spent executing the following instructions before the
next annotation. But other kind of information could be computed using the labelling
approach, such as stack size for instance.

Frama− C. In order to deduce an upper bound of the WCET of a C function, we need a
tool that can analyse C programs and relate the value of the cost variable before and after
the function is executed. We chose to use the Frama− C verification tool [4] for the following
reasons:

2

• the platform allows all sorts of analyses in a modular and collaborative way: each analysis
is a plug-in that can reuse the results of existing ones. The authors of Frama− C provide
a development guide for writing new plug-ins. Thus, if existing plug-ins experience
difficulties in synthesizing the WCET of C functions annotated with CerCo, we can
define a new analysis dedicated to this task;

• it supports ACSL, an expressive specification language à la Hoare logic as C comments.
Expressing WCET specification using ACSL is very easy;

• the Jessie plug-in builds verification conditions (VCs) from a C program with ACSL
annotations. The VCs can be sent to various provers, be they automatic or interactive.
When they are discharged, the program is guaranteed to respect its specification.

Figure 2 shows the program of figure 1b with ACSL annotations added manually. The
most important is the post-condition attached to the is sorted function:

ensures cost <= \old(cost) + 101 + (size-1)*195;

It means that executing the function yields the value of the cost variable to be incremented
by at most 101 + (size-1)*195: this is the WCET specification of the function. Running
the Jessie plug-in on this program creates 8 VCs that an automatic prover such as Alt− Ergo2

is able to fully discharged, which proves that the WCET specification is indeed correct.

Contributions. This paper describes a possible back-end for CerCo’s framework. It vali-
dates the approach with a tool that uses CerCo’s results to automatically or semi-automatically
compute and verify the WCET of C functions. It is yet one of the many possibilities of using
CerCo for WCET validation, and shows its benefit: WCET computation is not a black box
as it is usually, and the user can understand and complete manually what the tool failed to
compute.

In the remaining of the article, we present a Frama− C plug-in called Cost that adds
a WCET specification to the functions of a CerCo-annotated C program. Section 2 briefly
details the inner workings of the plug-in and discusses its soundness. Section 3 compares our
approach with other WCET tools. Section 4 presents a case study for the plug-in on the
Lustre synchronous language. Section 5 shows some benchmarks on standard C programs,
on C programs for cryptography (typically used in embedded software) and on C programs
originated from Lustre files. Finally, section 6 concludes.

2 The Cost plug-in

The Cost plug-in for the Frama− C platform has been developed in order to automatically
synthesize the cost annotations added by the CerCo compiler on a C source program into
assertions of the WCET of the functions in the program. The architecture of the plug-in is
depicted in figure 3. It accepts a C source file for parameter and creates a new C file that is the
former with additional cost annotations (C code) and WCET assertions (ACSL annotations).
First, the input file is fed to Frama− C that will in turn send it to the Cost plug-in. The
action of the plug-in is then:

2http://ergo.lri.fr/

3

int cost = 0;

/*@ ensures cost == \old(cost) + incr; */

void cost incr (int incr) { cost = cost + incr; }

/*@ requires size >= 1;

@ ensures cost <= \old(cost) + 101 + (size-1)*195; */

int is sorted (int *tab, int size) {
int i, res = 1;

cost incr(97);

/*@ loop invariant i < size;

@ loop invariant cost <= \at(cost, Pre) + 97 + i*195;

@ loop variant size-i; */

for (i = 0; i < size-1; i++) {
cost incr(91);

if (tab[i] > tab[i+1]) { cost incr(104); res = 0; }
else cost incr(84);

}

cost incr(4);

return res;

}

Figure 2: Annotations with ACSL

1. apply the CerCo compiler to the source file;

2. synthesize an upper bound of the WCET of each function of the source program by
reading the cost annotations added by CerCo;

3. add the results in the form of post-conditions in ACSL format, relating the cost of the
function before and after its execution.

C source

Frama− C/Cost

CerCo

Synthesis

add ACSL annotations

C source
+

cost synthesis
annotations

Frama− C/Jessie

Synthesis is correct
√

Figure 3: the Cost plug-in

Then, the user can either trust the results (the WCET of the functions), or want to verify
them, in which case he can call Jessie.

4

We continue our description of the plug-in by discussing the soundness of the framework,
because, as we will see, the action of the plug-in is not involved in this issue. Then, the details
of the plug-in will be presented.

2.1 Soundness

As figure 3 suggests, the soundness of the whole framework depends on the cost annotations
added by CerCo, the synthesis made by the Cost plug-in, the VCs generated by Jessie, and the
VCs discharged by external provers. Since the Cost plug-in adds annotations in ACSL format,
Jessie (or other verification plug-ins for Frama− C) can be used to verify these annotations.
Thus, even if the added annotations are incorrect, the process in its globality is still correct:
indeed, Jessie will not validate incorrect annotations and no conclusion can be made about the
WCET of the program in this case. This means that the Cost plug-in can add any annotation
for the WCET of a function, the whole framework will still be correct and thus its soundness
does not depend on the action of the Cost plug-in. However, in order to be able to actually
prove a WCET of a function, we need to add correct annotations in a way that Jessie and
subsequent automatic provers have enough information to deduce validity.

2.2 Inner workings

The cost annotations added by the CerCo compiler take the form of C instructions that update
by a constant a fresh global variable called the cost variable. Synthesizing a WCET of a C
function thus consists in statically resolving an upper bound of the difference between the value
of the cost variable before and after the execution of the function, i.e. find in the function the
instructions that update the cost variable and establish the number of times they are passed
through during the flow of execution. This raises two main issues: indecidability caused by
loop constructs, and function calls. Indeed, a side effect of function calls is to change the
value of the cost variable. When a function calls another one, the cost of the callee is part of
the cost of the caller. This means that the computation of a WCET of each function of a C
program is subject to the calling dependencies. To cope with the issues of loops and function
calls, the Cost plug-in proceeds as follows:

• each function is independently processed and associated a WCET that may depend on
the cost of the other functions. This is done with a mix between abstract interpretation
[5] and syntactic recognition of specific loops for which we can decide the number of
iterations. The abstract domain used is made of expressions whose variables can only
be formal parameters of the function;

• a system of inequations is built from the result of the previous step, and is tried to be
solved with a fixpoint. At each iteration, the fixpoint replaces in all the inequations the
references to the cost of a function by its associated cost if it is independent of the other
functions;

• ACSL annotations are added to the program according to the result of the above fixpoint.
Note that the two previous steps may fail in finding a concrete WCET for some functions,
because of imprecision inherent to abstract interpretation, and recursion in the source
program not solved by the fixpoint. At each program point that requires an annotation
(function definitions and loops), annotations are added if a solution was found for the
program point.

5

Figure 4 shows the result of the Cost plug-in when fed the program in figure 1a. There are
several differences from the manually annotated program, the most noticeable being:

• the manually annotated program had a pre-condition that the size formal parameter
needed to be greater or equal to 1. The Cost plug-in does not make such an assumption,
but instead considers both the case where size is greater or equal to 1, and the case
where it is not. This results in a ternary expression inside the WCET specification (the
post-condition or ensures clause), and some new loop invariants;

• the loop invariant specifying the value of the cost variable depending on the iteration
number refers to a new local variable named cost tmp0. It represents the value of the
cost variable right before the loop is executed. It allows to express the cost inside the
loop with regards to the cost before the loop, instead of the cost at the beginning of the
function; it often makes the expression a lot shorter and eases the work for nested loops.

Running Jessie on the program generates VCs that are all proved by Alt− Ergo: the WCET
computed by the Cost plug-in is correct.

int cost = 0;

/*@ ensures cost ≡ \old(cost) + incr; */

void cost incr (int incr) { cost = cost + incr; }

/*@ ensures (cost ≤ \old(cost)+(101+(0<size-1?(size-1)*195:0))); */

int is sorted (int *tab, int size) {
int i, res = 1, cost tmp0;

cost incr(97);

cost tmp0 = cost;

/*@ loop invariant (0 < size-1) ⇒ (i ≤ size-1);

@ loop invariant (0 ≥ size-1) ⇒ (i ≡ 0);

@ loop invariant (cost ≤ cost tmp0+i*195);

@ loop variant (size-1)-i; */

for (i = 0; i < size-1; i++) {
cost incr(91);

if (tab[i] > tab[i+1]) { cost incr(104); res = 0; }
else cost incr(84);

}

cost incr(4);

return res;

}

Figure 4: Result of the Cost plug-in

3 Related work

There exist a lot of tools for WCET analysis. Yet, the framework encompassing the Cost
plug-in is the only one, to our knowledge, that enjoys the following features:

6

• The results of the plug-in have a very high level of trust. First, because the cost an-
notations added by CerCo are proven correct (this is on-going research in the Matita3

system). Second, because verification with Jessie is deductive and VCs can be discharged
with various provers. The more provers discharge a VC, the more trustful is the result.
When automatic provers fail in discharging a VC, the user can still try to verify them
manually, with an interactive theorem prover such as Coq4 that Jessie outputs to.

• While other WCET tools act as black boxes, the Cost plug-in provides the user with
as many information as it can. When a WCET tool fails, the user generally have few
hopes, if any, of understanding and resolving the issue in order to obtain a result. When
the Cost plug-in fails to add an annotation, the user can still try to complete it. And
since the results of CerCo is C code, it is much easier to understand the behavior of the
annotations.

• The results of the Cost plug-in being added to the source C file, it allows to easily identify
the cost of parts of the code and the cost of the functions of the program. The user can
modify parts that are too costly and observe their precise influence on the overall cost.

• The framework is modular: the Cost plug-in is yet one possible synthesis, and Jessie is
one possible back-end for verification. We can use other synthesis strategies, and choose
for each result the one that seems the most precise. The same goes for Jessie: we can
use the WP plug-in of Frama− C instead, and even merge the results of both. Similarly,
if we were to support more complex architectures, computing the cost of object code
instructions could be dedicated to an external tool that is able to provide precise results
even in the presence of cache, pipelines, etc [6].

4 Lustre case study

Lustre is a synchronous language where reactive systems are described by flow of values. It
comes with a compiler that transforms a Lustre node (any part of or the whole system) into
a C step function that represents one synchronous cycle of the node. A WCET for the step
function is thus a worst case reaction time for the component. The generated C step function
neither contains loops nor is recursive, which makes it particularly well suited for a use with
the Cost plug-in with a complete support.

We designed a wrapper that has for inputs a Lustre file and a node inside the file, and
outputs the cost of the C step function corresponding to the node. Optionally, verification
with Jessie or testing can be toggled. The flow of the wrapper is described in figure 5. It
simply executes a command line, reads the results, and sends them to the next command.

Lustre �le
C �le with

step function

C �le with
step function

+
CerCo annotations

+
ACSL WCET speci�cation

Frama− C/Jessie

Output

Test

lus2c Cost plug-in

Figure 5: Flow of the Lustre wrapper

3http://matita.cs.unibo.it/
4http://coq.inria.fr/

7

A typical run of the wrapper looks as follows (we use the parity example from our distri-
bution of Lustre; it computes the parity bit of a boolean array):

frama-c lustre -verify -test parity.lus parity

Invoking the above command line produces the following output:

WCET of parity step: 2220+ cost of parity O parity+ cost of parity O done

(not verified).

Verifying the result (this may take some time)...

WCET is proven correct.

Testing the result (this may take some time)...

Estimated WCET: 2220

Minimum: 2144

Maximum: 2220

Average: 2151

Estimated WCET is correct for these executions.

• All the intermediary results of the wrapper are stored in files. Verbosity can be turned
on to show the different commands invoked and the resulting files.

• The step function generated with the Lustre compiler for the node parity is called
parity step. It might call functions that are not defined but only prototyped, such
as parity O parity or parity O done. Those are functions that the user of the Lustre
compiler can use for debugging, but that are not part of the parity system. Therefore,
we leave their cost abstract in the expression of the cost of the step function, and we set
their cost to 0 when testing (this can be changed by the user).

• Testing consists in adding a main function to the C file, that will run the step function
on a parameterized number of input states for a parameterized number of cycles. The
C file contains information that allows to syntatically distinguish integer variables used
as booleans, which helps in generating interesting input states. After each iteration of
the step function, the value of the cost variable is fetched in order to compute its overall
minimum, maximum and average value for one step. If the maximum were to be greater
than the WCET computed by the Cost plug-in, then we could conclude of an error in
the plug-in.

5 Experiments

The Cost plug-in and the Lustre wrapper have been developed in order to validate CerCo’s
framework for modular WCET analysis, by showing the results that could be obtained with
this approach. Through CerCo, they allow (semi-)automatic generation and certification of
WCET for C and Lustre programs. For the latter, the WCET represents a bound for the
reaction time of a component. This section presents results obtained on C programs typically
found in embedded software, where WCET is of great importance.

The Cost plug-in is written in 3895 lines of ocaml. They mainly cover an abstract interpre-
tation of C together with a syntactic recognition of specific loops, in a modular fashion: the
abstract domains (one for C values and another for cost values) can be changed. The Lustre

8

wrapper is made of 732 lines of ocaml consisting in executing a command, reading the results
and sending them to the next command.

We ran the plug-in and the Lustre wrapper on some files found on the web, from the Lustre
distribution or written by hand. For each file, we report its type (either a standard algorithm
written in C, a cryptographic protocol for embedded software, or a C program generated from
Lustre file), a quick description of the program, the number of lines of the original code and
the number of VCs generated. A WCET is found by the Cost plug-in for everyone of these
programs, and Alt− Ergo was able to discharge all VCs.

File Type Description LOC VCs

3-way.c C Three way block cipher 144 34

a5.c C A5 stream cipher, used in GSM cellular 226 18

array sum.c S Sums the elements of an integer array 15 9

fact.c S Factorial function, imperative implementation 12 9

is sorted.c S Sorting verification of an array 8 8

LFSR.c C 32-bit linear-feedback shift register 47 3

minus.c L Two modes button 193 8

mmb.c C Modular multiplication-based block cipher 124 6

parity.lus L Parity bit of a boolean array 359 12

random.c C Random number generator 146 3

S: standard algorithm C: cryptographic protocol
L: C generated from a Lustre file

Programs fully automatically supported. Since the goal of the Cost plug-in is a proof of
concept of a full framework with CerCo, we did not put too much effort or time for covering a
wide range of programs. CerCo always succeeds, but the Cost plug-in may fail in synthesizing
a WCET, and automatic provers may fail in discharging some VCs. We can improve the
abstract domains, the form of recognized loops, or the hints that help automatic provers.
For now, a typical program that is processed by the Cost plug-in and whose VCs are fully
discharged by automatic provers is made of loops with a counter incremented or decremented
at the end of the loop, and where the guard condition is a comparison of the counter with
some expression. The expressions incrementing or decrementing the counter and used in the
guard condition must be so that the abstract interpretation succeeded in relating them to an
arithmetic expressions whose variables are parameters of the function. With a flat domain
currently used, this means that the values of these expressions may not be modified during a
loop.

6 Conclusion

We have described a plug-in for Frama− C that relies on the CerCo compiler to automatically
or semi-automatically synthesize a WCET for C programs. The soundness of the overall
process is guaranteed through the Jessie plug-in. Finally, we successfully used the plug-in on
C programs generated from Lustre files; the result is an automatically computed and certified
reaction time for the Lustre nodes. This experience validates the modular approach of CerCo
for WCET computation with a high level of trust.

9

References

[1] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. COSTA: Design and
implementation of a cost and termination analyzer for java bytecode. In Formal Methods
for Components and Objects, 6th International Symposium, FMCO 2007, Amsterdam,
The Netherlands, October 24-26, 2007, Revised Lectures, volume 5382 of Lecture Notes in
Computer Science, pages 113–132. Springer, 2008.

[2] R. M. Amadio, N. Ayache, and Y. Régis-Gianas. Deliverable 2.2: Prototype implemen-
tation. Technical report, ICT Programme, Feb. 2011. Project FP7-ICT-2009-C-243881
CerCo - Certified Complexity.

[3] R. M. Amadio, N. Ayache, Y. Régis-Gianas, K. Memarian, and R. Saillard. Deliverable
2.1: Compiler design and intermediate languages. Technical report, ICT Programme, July
2010. Project FP7-ICT-2009-C-243881 CerCo - Certified Complexity.

[4] L. Correnson, P. Cuoq, F. Kirchner, V. Prevosto, A. Puccetti, J. Signoles, and
B. Yakobowski. Frama-C user manual. CEA-LIST, Software Safety Laboratory, Saclay,
F-91191. http://frama-c.com/.

[5] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic and
Computation, 2(4):511–547, 1992.

[6] R. Heckmann and C. Ferdinand. Worst-case execution time prediction by static program
analysis. In In 18th International Parallel and Distributed Processing Symposium (IPDPS
2004, pages 26–30. IEEE Computer Society.

10

http://frama-c.com/

	Introduction
	The Cost plug-in
	Soundness
	Inner workings

	Related work
	Lustre case study
	Experiments
	Conclusion
	References

