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Abstract. In this article, we propose a methodology to formally verify
hardware component descriptions. Our approach considers asynchronous
descriptions and introduces abstract scenarios as a working representa-
tion to reduce the number of behaviours. We aim to use this methodology
on the SystemC language.

1 Introduction

Hardware Description Languages (HDL) help a lot in circuit synthesis, but also
in checking the behaviour of a component from a textual description. Verification
aims to minimize the synthesis of erroneous components. To further trust these
descriptions, we propose a methodology for their formal verification, besides a
dynamic verification by simulation.

To cope with the explosion, in model-checking, of the number of reachable
states, we propose a verification methodology based on scenarios and formal
proofs, with user-guided abstractions. Within the scenarios, we progressively
build Quality-of-Service (QoS) properties of a system from the functional be-
haviour of its components. Scenarios are sequential and help understanding how
a system behaves on a sequence of events.

There are mainly two approaches to develop systems: top-down (require-
ments to implementation) and bottom-up (component reuse). Most of the time,
a system is built using both approaches. Our methodology focuses on the case
where the description of the system is already done but lacks formal verification
and QoS properties. The challenge is: what can we use to make the formal ver-
ification process less memory and time consuming? We use scenarios to answer
this question. They can deal with time and express functional dependencies.
Moreover, they are compatible with the top-down (system view [1]) and the
bottom-up approaches. In this article, we describe them and explain why they
help in formally verifying a system in a bottom-up approach. We illustrate our
work on the SystemC [2] language. For the SystemC semantics, we partially rely
on SystemCFL [3]. On the other hand, scenarios are well known objects as Live
Sequence Charts [1], or use cases in UML modelling.

In section 2, we show how we build the semantics of components, systems
and scenarios. Section 3 describes the user’s point of view and the algorithms
attached to the use of scenarios. At last, section 4 concludes.



2 Semantics

SystemC is a C++ library that defines high-level primitives to describe time-
dependant components in which hardware and software aspects intertwine. A
system is built from components assembled together through communication
channels. SystemC comes with a simulator engine to test the behaviour of a
synchronous and deterministic execution of the system.

We define a semantics for SystemC descriptions, closer to the hardware
implementations. Although a SystemC description is often far from synthesis,
our semantics introduces non-determinism opposed to the rather deterministic
SystemC scheduler. In this semantics, a local and a posteriori analysis (based
on data and control dependencies on SSA forms [4]) can verify the determinism.

2.1 Components and systems

A component in SystemC is one or several processes (C++ methods) with com-
munication interfaces: channels convey streams of values that are accessed by
the component through ports. Specific types and instructions are added to the
C++ language to deal with communication and synchronization (e.g. sc port ,
sc mutex , notify , wait).

In our semantics, a port is a function from time to values and a process defines
relations on ports and shared data (the relations introduce non-determinism). A
system is obtained by connecting components, which defines a semantics repre-
senting all the interleaving on shared data.

Simulation of a system. A simulation of a system is a particular scheduling
of events on ports and shared data. A (potentially infinite) sequence of events
is a trace of simulation. An ideal scheduler is defined by giving the hand, at
each moment, to a component that will execute a part of its process. The latter
can be cut out following synchronizing points. The resulting portions of code
are called the actions of the components. A moment is the time to execute an
action. The choice of which component should act is open but must respect the
following rule: a component in a waiting state or that has no instruction left to
execute cannot act. The set of all possible simulations of the system is then an
abstraction of the scheduling and the inputs. We use inference rules to derive
this set. They express a relation between a system, a scheduler and traces of
simulation (sequences of events).

2.2 Scenarios

Given a system, some of its simulations share common properties. A scenario is
a description that looks like a program. It acts as a filter on traces of simulation
and checks whether:

– the trace of simulation is out of the scenario (an assume failed);



– the trace of simulation belongs to the scenario and the system well-behaves
(all assume and assert succeed);

– the trace of simulation belongs to the scenario and the system badly-behaves
(all assume succeed and at least an assert failed).

natural nb_prod ∈ [0, +∞[;
while (--nb_prod >= 0)

{ reach(...);

int x = in;

assume(1 <= x && x <= 255);

reach(...);

assert(out == x*x);

}

assume(in == 0);

The scenario besides accepts on the input
port in all finite streams of characters that
ends with ’\0’ and all infinite streams of
non null characters. Basic instructions such
as variable declaration, affectation, test and
loop are present, together with a specific
primitive, reach, that allows executing a
part of the process of a component. This
gives the possibility to play the role of the
scheduler and to cope with states explosion.

But traces of simulation may be infinite; scenarios allow expressing them even
though they cannot be executed. This is where abstract interpretation and model
checking help. Since abstract interpretation has concrete and abstract domains,
we give semantics (1) to the infinite execution of a concrete scenario on concrete
traces of simulation (this is for the partial scenarios supplied by the user), (2)
to the infinite execution of a concrete scenario on abstract and approximated
traces of simulation, (3) to the approximate execution of a complete and abstract
scenario on abstract traces of simulation. This ends our hierarchy of scenarios.

3 The algorithmic and the user’s point of view

The verification methodology consists in several steps.
First, the user comes with a source code (a description of a system). It is

parsed with a SystemC parser adapted from elsa [5] to distinguish the compo-
nents and their connections. Then he must choose a component to work with,
by providing a scenario to describe its behaviour.

The completion algorithm. When the user describes a scenario, he describes
the evolution of input ports. Indeed, our algorithm automatically infers within
the scenario abstract streams of values on the output ports and shared data.
We adapt abstract interpretation techniques to work on symbolic domains. The
result is sound w.r.t. the abstract semantics of complete scenarios working on
abstracted traces of simulation. We introduce specific captors to detect non-
stability. But in some cases the completion may fail, requiring the user to adapt
his scenario. The actions of the environment must be lightly specified in the
scenario (some refinements are done when assembling components and thus sce-
narios). This way, we build a complete scenario that embeds every event and
that does not rely on the execution of a component anymore.

The scenario assembly algorithm. Once two or more components have been
given scenarios, they can be assembled using the connection code present in



SystemC constructors. The algorithm builds within the first scenario a complete
view of the system, and then does the same for the second scenario. Since both
views see the same system, a second algorithm merges them into a unique view
that is a single scenario containing the product of the processes of the compo-
nents being assembled together.

Abstracting scenarios. From there, to simplify the code, the user may ask that
certain variables are forgotten from now on. By introducing such approximations,
the user suppresses irrelevant details, shortens the size of the scenario and guides
his scenario to express QoS properties.

Proofs of temporal and functional properties. What is interesting is that
proving a property on a scenario is equivalent to proving the property in all the
simulations that the scenario represents. For this part, we provide a translation
of the scenario into a C program accepted by the Caduceus/Why tool [6]. The
user only has to annotate its conditions and the properties he wants to prove.

4 Conclusion

To sum up, we described a scenario-based methodology to prove properties of
hardware component descriptions. Completeness of scenario is an interesting
issue, but we see it as an extension of the PhD. work.

So far, we have implemented a small common language to the various HDL.
The execution of precise scenario on this language gave birth to a prototype. A
small set of the SystemC language is already supported.

First experiments are promising: we used our methodology on an implementa-
tion of a simple FIFO given in the SystemC distribution. This allowed revealing
possible deadlocks depending on the underlying hardware.

The formalization of complete scenarios is coming to an end and should soon
be implemented. Assembly will come right after.
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